Testing - Foundations

Mindmap Summaries on TestingEducation.Org — Testing Foundations
Course by: Cem Kaner, James Bach & Rebecca L. Fiedler

Rahul Parwal

Foreword by James Marcus Bach

Acknowledgement

This book 1s published based on the material on Foundations available at testingeducation.org which is under the
restrictions of the Creative Commons Attribution - Share Alike License.

We would like to explicitly acknowledge the authors and copyright holders, 1.e. Dr. Cem Kaner and James Marcus
Bach for the remarkable work that they have done and made publicly available for study, reference, and self-learning.

NOTE: This ebook 1s published under the license of the Creative Commons Attribution - Share Alike License.

http://www.testingeducation.org/BBST/foundations/
https://creativecommons.org/licenses/by/3.0/https:/creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by/3.0/https:/creativecommons.org/licenses/by-sa/2.0/

Mind Map Summary E-Book on
Testing - Foundations

I came across TestingEducation.org Course after watching a keynote talk by Ajay Balamurugadas at CAST 2015. If you are also interested in the future of testing and the
learning opportunities for testers, then I would recommend this talk to you too. It’s available at bit.ly/ajkeynote.

I started the Testing Foundations Course using the self-paced video(s) available at http://www.testingeducation.org/
Having spent almost 4 years in the software industry, I was confident that I would be able to cover this 2.5 hours (157 mins) course on testing basics (foundations) within 2-3
days. However, when I started with this course, I realized that each chapter is filled with so much and would require a lot of notetaking, processing, & challenging the existing

understanding of things. I started making mind map summaries for each lecture and started sharing them on LinkedIn as my daily learning capsule.

The response that was received from the Testing community was overwhelmingly positive. I would like to mention the name of Ajay Balamurugadas and Shailesh Gohel, who
saw the seed of this book in me. Thanks to everyone for helping me with your positive feedback on mind maps/summaries.

This e-book 1s useful for anyone who wants to understand, revise, study, or learn about software testing and its foundational concepts.

Happy Reading! Happy Learning!

'y R

Rahul Parwal
Student of Software Testing
Member of The Test Tribe Community

m rahul-parwal W parwalrahul

bit.ly/ajkeynote
http://www.testingeducation.org/BBST/foundations/
https://www.linkedin.com/in/rahul-parwal/
https://twitter.com/parwalrahul

Dedicated to my father and mother,
who faught me how fto test, explore & share in life

Foreword

My name is on the BBST class, but I've never taught it. Cem Kaner put my name on it because he used so much of my material and ideas in the design. But, in fact, the class
is a monumental curriculum development effort by Cem, himself. It's his vision and his philosophy of teaching, plus a couple of thousand hours of his meticulous labor. The
closest I ever got to teaching it was when I was a "beta tester" student during the first-ever attempt to teach BBST. But I never finished it. I was expelled! Well, more
accurately, Michael Bolton and I were kindly asked by Cem to drop out, because he was worried that we were too obsessive about the exercises. We were staying up all night
competing with each other to give the most elaborate and deep answers to even simple questions. Cem thought we might be intimidating the other students.

I was very happy to stop. I needed to sleep. Taking BBST is a lot like climbing a mountain. I have my disagreements with the class, but in general, I would say that I admire
anyone who passes it; and even people who didn't pass it but worked hard.

Back when he created BBST, Cem and I were collaborating on changing the world of testing. Each of us pursued this in his own ways. I am a high school dropout who
distrusts formal schooling; Cem has two doctorates (a Ph.D. in psychophysics and a J.D.) and was a professor at the Florida Institute of Technology. I enjoy personally

coaching and teaching, but that limits the impact I can have; Cem wanted something easier to scale.

BBST was originally developed as an undergraduate course at FIT, which explains its emphasis on grading. Cem was also hoping to create a compelling alternative to the
shallow and poorly researched ISTQB certification.

In hindsight, Cem's vision didn't work out. Why? The ISTQB is popular BECAUSE it's shallow and pootly researched! That's why.

BBST 1s hard because developing COMPETENCE is hard.

ISTQB 1s easy because recycling popular myths on the internet about testing is easy.

In this booklet, Rahul has put together a tantalizing glimpse of some of its content. Jdm es Marcus Bach

, , o Creator of Rapid Software Testing methodology
If you are a serious student of testing, then I strongly suggest that you dive in.

m james-bach wl¥ jamesmarcusbach

https://www.linkedin.com/in/james-bach-6188a811/
https://twitter.com/jamesmarcusbach

TABLE OF CONTENTS

Introduction

Overview & Basic Definitions

Strategy

Oracles

Programming Fundamentals & Coverage

The Impossibility of Complete Testing

Introduction to Measurement

RECOMMENDED READINGS

Introduction

The Testing Foundations course is one of the most eye-opening and in-depth online course on the fundamental concepts in software testing and its critical

challenges. I have tried to compile this e-book for anyone who wants to understand, revise, study, or learn about software testing and its foundational
concepts.

NOTE: This e-book is in not a substitute for the TestingEducation.Org - Testing Foundations course but is an extension to it. It will help you to revisit the
testing concepts and could be used as a cheat sheet for foundational testing knowledge on Software Testing.

This e-book consists of the topics ranging from the scope of testing, to software testing metrics.

It presents basic terminology in the field of software testing and considers:
* The Mission of Testing

* The Oracle Problem

* The Measurement Problem

* The Impossibility of Complete Testing

How to read mind maps:

* Startat 12 o’clock and go clockwise.

* Colors and Images have been added to the mind maps to give strength to the summary and make it easier to read.

* Different colored lines have been used to separate the different areas of the mind map.

* Symbols have been used to add extra strength to the associations and it can have a meaning of its own (not always).

" Chapter One

Overview &
I Basic Definitions

Overview & Basic Definitions

This section provides an overview of the online Testing Foundations course and introduces some
definitions commonly used in the testing field.

Topics Covered:

* Definitions

* What are we really testing for?

* Software Error — AKA Bug

* Software Testing

* Testing Approaches

* Levels of Testing

* Functional & Paratunctional Testing
* Acceptance Testing

* Independent Testing

That reduces its value
© toafavored
stakeholder

An attribute of

Or increases its value to

a disfavored stakeholder @ asoftware

product

Without a sufficiently
© large countervailing
benefit !

May or may not be a coding error,
or a functional error

\) AnError

Software
*’\\ Error -

AKA Bug

» Design errors are bug too Y

Any threat to the value of the product to any
stakeholder who matters -James Bach

|
/

o Quality is value to some person
- Jerry Weinberg

Quality is inherently subjective!

Different stakeholders = Different perception

<
ey

What are
we really
testing
for?

Cem Kaner

testingeducation.org/BBST

Overview & Basic
@ Definitions In
Software Testing

Testers look for different things for
different stakeholders

@

\,
/

el]

T\

Course
Trainers

How
would you
definea"
House" ?

How
would you
define a
Program?

) Cem Kaner
€) James Bach

) Rebeccal.Fiedler

0 (@parwalrahul

A house is a set of construction

@® materials assembled according

to house-design patterns.

A house is

@ something built for
people to live in.

A computer
program is

Stakeholders

(1)
for people
-, Focuses (for people)
" ON
Purpose
(to live in)

A communication

among several humans
and computers

who are distributed
over space & time

that contains instructions

The point of a program is to provide
value to the stakeholders

Foundations — 1A, Overview & Basic Definitions in Software Testing

Click Here For Interactive Mindmap

https://www.xmind.net/m/xjr8LT
https://twitter.com/parwalrahul

E’E Cem Kaner
testingeducation.org/BBST

System level testing that looks at a

program as a set of functions
A "Function” might be a individual Functional Softyvare © Is animpirical, technical investigation
feature or a broader capability that © Testing Testing Conducted to provide stakeholders with information
relies on several underlying features
Wi I function in t the inbut Functional & © About the quality of the product or AUT
e analyze a function in terms on the inpu .
we provide and the output we expect E Par.afunctlonalT Find | tant B A li f duct
esting (v Find Important Bugs; Assess quality of produc
Parafunctional includes anything " . .
other than" (“para")‘ functional. Parafunctional / 2D Assess the progress of the project
Same for non-functional. Nonh Functional Testing is a ® Helps @ Make release decisions
. Testing Management
The concept of parafunctional (or \ @ Search fo.r © Block premature product releases
non-functional) testing is vague. / Information
r 5 © Predict & control support costs

@ Focus on individual units of the product . .
Unit Ove rview & Bas iC Check interoperability with other product
Unit may occur at any level of the design hierarchy \ Testi
. estin o- e e . .
from a single module to a complete program 9 g@ Defl n|t|ons I n Helps Find safe scenarios
[]
() Unit Testing Tools: JUnit, xUnit, nUnit, etc 7 SOftwa re Test| ng - II B ® Team © Assess conformance to specifications
@ Focus on how two (or more) units work together) ’ Certify that product meets certain standards
Low Level Integration = 2 or 3 Units Integration) By evaluating the product of a third party
Testing
High Level Integration = Many Units 0 I _ll-_evf.ls of @ Testing without knowledge of the code
esting
May be Black Box or Glass Box o Black The black box tester becomes an expert
Box €} in the relationships between the
Focuses on the value of the running system Testing program and the world in which it runs.
System Testing
Demonstrates h?‘l” the \ In a some case, also referred as Behavioral
program meets it's objectives / Testing (behavioural testers might also read
@ Focuses on details of the implementation Testing the code and design tests on that basis)
Implementation : :
Typically, it Is glass box testing k Tesr:ing Approaches o SJE:S B;DX / @ Testing using the knowledge of the code
ite Box
The glass box tester becomes an expert

Testing (2)

Also referred as "Programmer Testing" / in the imol tati ¢ the AUT
in the implementation of the

in Extreme Programming community

Also, referred as Structural Testing

Grey Box Testing & Black Box + Glass Box

Foundations — 1B, Overview & Basic Definitions in Software Testing

Click Here For Interactive Mindmap

https://www.xmind.net/m/LU7LTT
https://twitter.com/parwalrahul

E___%

Overview & Basic
Definitions In
Software Testing-1C

(cuj

| Cem Kaner
A= testingeducation.org/BBST
Acceptance testing is applicable if we
Acceptance have contract based requirements!
Testing It's a common usage term with many local variations
= When in doubt, it's better to check your local definitions!
Testing done by a third party!
Some companies have an independent in-house test group
.,Q Inde.pendent Key nhotion is that the independent testers aren't

Testing

© influenced or pressured to analyze and test the software in
ways preferred by the developers.

Independent labs might do any type of testing.

Varies a lot in reality despite it's so called "Independent” hame

Foundations — 1C, Overview & Basic Definitions in Software Testing

Click Here For Interactive Mindmap

https://www.xmind.net/m/h6fD3C
https://twitter.com/parwalrahul

. Chapter Two

Strategy

Strategy

This chapter considers why testers test, what they are trying to learn, and how they can organize their work
to achieve their mission.

Topics Covered:

* What is Sotftware Testing?

* Testing Mission

* Testing Strategy

* Test Techniques

* 'Typical Testing Tasks

 Hxternal Test Lab vs In-House Test Lab
* Verification vs Validation

Given a testing mission,
how will you achieve it?

Who's going to run the tests? =~

What potential problems
are they looking for?

®

.. What are the outputs? (Reports?
Logs? Archives? Code?)

How will they recognize "“clear”
failure? (Oracles?)

&
What aspects are they testing ? -
@ How are they going to test? -

What tools will be used?

@ What is the source of test data? ~

"Mission" is your answer to the
. . =
question "Why are you testing"?

Typically, mission is to achieve your
primary information objective(s)

Test group missions also change over
the time

Harsh Tests =

Exploratory Scans = Sample
— (» Mission —
Status and Quality assessments =~ Examples:

Tests including coverage-oriented surveys =

Make your mission explicit. Be wary of trying
to achieve several missions at the same time.

/]

o Testing
o/ Strategy

@0 Testing
Mission

E’a Cem Kaner
testingeducation.org/BBST

Test Strategy

- Whatis
%! Software
" Testing

Foundations - 2A, Strategy

Click Here For Interactive Mindmap

Fundamental
—~— Topics

Information objectives drive the
testing mission & strategy !

-0

- Oracles are heuristic

- () Measurement is important, but hard

QO

evaluate it !
~) Is an empirical -[

- © Technical —

~ O Investigation {

- @ Software Testing — Conducted to

provide
stakeholders
with information

~O

Of the product
- () or service
under test

~ © Coverage is a multidimensional problem

Testing is questioning a product in order to
- James Bach

We gain knowledge from the world

We gain knowledge from many sources

We use technical means -
logic,

models, tools, etc.

Thorough search of information

Active process of enquiry

Info on testing effort and success of product
Presence (or absence) of bugs

Other critical information

~ @ About the quality — Value to some person

Product includes Data,
Documentation, Hardware, etc.

Most Software combines product & service

https://www.xmind.net/m/FgUMAQ
https://twitter.com/parwalrahul

° @parwalrahul

~ (») Analyze the situation
~ () Model the test space
i~ (% Select what to cover

A technique typically tells you [~ (D Determine test oracles

how to do several of these:

-0

M~ (D Configure the test system
M~ () Operate the test system
M~ & Observe the test system

@!E Cem Kaner °* Test I
testingeducation.org/BBST % Techniques = @ Evaluate the test result

M~) A test technique is like a recipe

"Verification" is asking whether ~ © It takes several recipes to create a complete meal

the product is built correctly.

o

Verification

<o “ () Ex: Domain Testing, Scenario Testing
o T
*Validation" is aski iy VIS Test Strategy -
Validation" is asking whether Validation
the right product is built ! 2 B
~) Research ways this product can fail or be unsatisfactory
- © Hunt Bugs
External 0 Analyze specification and create tests that trace to
External Lab might be more skilled in some — They might be more effective in some types of _| Test Lab i specific items of interest
technology or at some specific testing task tests and techniques ! Typical
- v/s) - . .
External Lab don't understand your market, _ Their exploratory tests would be less well . / Testlng TaSkS © Create sets of test data with well understood attributes
expectaions, risks, competitors or priorities informed by knowledge of the product |n-HOU5e
M~ () Create reusable tests (manual or automated)
External Lab don't have collaborative They will need more supporting TeSt Lab
opportunites with local developers and - documentation, reviews, release management =/ ~ @) Create checklist for manual testing or to guide automation
stakeholders and collaborative bug fixing
Research Failures and write well-researched,

persuasive bug reports

Foundations - 2B, Strategy

Click Here For Interactive Mindmap

https://www.xmind.net/m/4Bsj54
https://twitter.com/parwalrahul

. Chapter Three

Oracles

Oracles

This chapter presents software oracles as heuristics that help testers make a judgment whether or not
software passes the tests that are run.

Topics Covered:

* What are Oracles

* Test Contiguration

* Model of System Under Test
e How Observations FAIL?
* Heuristics

* Fallible Decision Rules

* QOracles

* Risk Based Testing

* Consistence Oracles

* Various Types of Oracles

Irahul
2 Cem Kaner 0 @parwatrany
testingeducation.org/BBST

Miss: Incorrect conclusion that the
program passes

Fallible
® False Alarm: We incorrectly . @ Decision
conclude that the program failed Rules o An oracle is a heuristic principle or mechanism
by which you recognize a "potential” problem !
g N What are] [& An oracle is a reference program
Heuristic is anything that provides a aid -> 2
ks i Oracles? . . e
or direction in the solution of a problem @ Traditional Oracles simply don't exists !
N
) Heuristics do not guarantee a solution
. . . A ® We only control some inputs and
T\.uo Heuristics may contradict or gn{e observe some results (outputs).
different answers to the same question. ~
o .) Does your test documentation
® LeStlr‘?- is al?out |de:'>. | @ Heuristics S © mention all process running
euristics give you ideas !
givey | @@ es . . on computer?
o o | © Configuration It's very difficult to make sure that
Heuristic is a fallible idea that may help you !) © the test & reference system are Does it specify what version
) . Lo equivalently configured ? of each one?
You relationship to a heuristic is the key -
to applying it wisely !) © Does it specify when was your
system last updated?
Humans (often) don't see what they
don’t pay attention to ! o Program state including
|
. : uvninspected outputs
Programs's don't see what they haven' 1) Program state including p
. : i [) relevant data
t been told to pay attention to ! . Our ~ System State
irreproducible bugs ® canFAlLLin - ~ [; _ P
o Intended Inputs =>
Any tests cannot practically address L) Svst B (3)
all possibilities ! ! ysiem H o Configuration & System . resources
J 10l Under resources
- "To" other cooperating
Test
L) "From" other O processes, clients &
O cooperating processes, L server
clients & server

Foundations — 3A, Oracles

Click Here For Interactive Mindmap

https://www.xmind.net/m/QNquNr
https://twitter.com/parwalrahul

Junior Testers wait for information to
= be handled to them and do whining
when they don't get it.

.. Competent Testers ask for
~ information or do their own research !

© Internal Documents, Specifications Some
E sources to
Competing Products, Reviews © consult for
Y research: N

© Training material, books, courses

() Real Users, Tech Support records

Credibility don't come automatically,
You have to earn it by knowing what you are talking about !

()

Consistent with claims

Consistent with History

Consistent with Purpose

Consistent with our image

° (@parwalrahul

@"E Cem Kaner
testingeducation.org/BBST

@

Consistency
Oracles
Require
Research !

The oracle highlights the fundamental
role of "judgment" in testing !

Testing is a cognitive activity,
NOT a mechanical activity !

Human judgement is fallible !

Instead of thinking PASS vs FAIL
Think PROBLEM vs NO PROBLEM !

O
%0 Oracles - 3 B

We choose tests which are most
likely to expose a problem!

© Unlikely to expose a problem

@ We SKIP tests, we think are: (.
Likely to expose a problem

%@ Risk Based | |-
Testing

Consistency within product

Consistent with user's expectations

o

Consistency
Oracles

that no one would care about

The same evaluation criteria lead to
different conclusions in different contexts !

@

Consistency with comparable product

Consistent with standards or regulations

Test Design

Bug Evaluation W Used To Guide:

Guide Reporting J

Our Expectations are NOT necessarily
correct

Our Expectations are NOT complete !

@ Four ©
Problems L

A mismatch between result and expectation
might not be serious enough to report !

Our Expectations are NOT necessarily
credible

Foundations — 3B, Oracles

Click Here For Interactive Mindmap

https://www.xmind.net/m/j2ewJP
https://twitter.com/parwalrahul

@ cCapabilities

Cem Kaner

testingeducation.org/BBST

Preferences
© Focused Chronology
~
() Sequence of Actions [Aspects
y, for Model
© Flow of Information l Creation
A
o/
@ Interactions / Dependencies EE
¢) Collections
J
@ Disadvantages @ Advantages @ Description (» Oracles
Straightforward,
Many false alarms, Can generate and Compare results .
Misses bugs that were verify large of test build with 1) Regression
also in previous build amounts of data previous build Test Oracle Orac les 3 C
Needs change if Allows analysis,
protocol changes, Does NOT require
Misses bugs that do external oracles, Self
not cause Verification is on € o
mismatching result data and NOT on CRC, Checksum, Verifying
fields interface Digital Signature Data Oracle
Maintenance of model Excellent Software
is expensive. exists to help test
Does not try to drive designer select a set Program is
the proogram through of tests that drive represented as
state transitions the program state machine, 3 State Model
considered impossible through every state transitions Oracle
We know the oraCIe
Vulnerable to misses Good with interaction Types]|
and false alarms. Automation for patterns between .
Building a model can thorough SUT and other o Interaction

take a lot of time

interactions

systems

Model Oracle

Oracle
Types |

Known data does not
provide oracles.

Not studied or
understood by other
testers.

Test Data exercise
the program in ways
you choose and you
expect to see
certain outcomes

Create test data
instead of live
data with
characterstics you
know thoroughly

Data set with
known
characterstic

Slow, Expensive, High

Useful for complex
SUT
Expected results

Result is carefully
selected by test

Maintenance can be understood designer @ Hand Crafted
Slow, Subjective,

Credibility varies with Human

the credibity of the Sometimes this is Judgement and

human the only way Decision @ Human

Foundations — 3C, Oracles

Click Here For Interactive Mindmap

(» Oracles

No Oracle -
Automated
© Testor
Incompetent
Human

No Oracle -
Competent
Human
Testing

Complete
© Oracle

Heuristic
() Consistency
Oracles

© Partial Oracle

Constraints
Oracle

Familiar
@ Failure
Patterns

¢ Description

& Advantages

Doesn't explicitly
check for
correctness

Can run any amount
of data.

Good for early
testing

They figure out
how to evaluate
the test while
they run it

They use general
expectations and
product information

Authoritative
mechanism to
know if program
passed or failed

Detects Error,
Enables effective
use of automation

Consistent with
product, history,
image, claims,

regulations, etc.

Illustrates ideas for
test design and
persuasive reporting

Verifies some
aspect of test
output

Inexpensive to
create and use,
More likely to exist

Checks for
impossible values
and relationships

Catches
straightforward
coding errors

Application
behaves in a way
that reminds us of
linked failures

Looks for problems
directly

° @parwalrahul

¢ Disadvantages

Notices only
spectacular failures.

Insecure,
inexperienced testers
need more structure

This is mythological
creature like unicorn

Too general for some
people

Can miss systematic &
obvious errors

Does not detects
errors if constraints
confict does not
happens

False analogies can be
distracting

https://www.xmind.net/m/LqcBP2
https://twitter.com/parwalrahul

. Chapter Four

Programming
Fundamentals &

Coverage

Programming Fundamentals & Coverage

This chapter presents information about basic data handling and storage to help testers think about the
multi-dimensional problem of test coverage in more sophisticated ways.

Topics Covered:

* Decimal Numbers

* Fractions

* Floating Point

* Binary Numbers

* 8,10, 32, 64 Bit Words

* Integer, Float, Double, ASCII
* Data Structures

* Control Structures

* Coverage

* Coverage as a Measurement

1.3777 x 10"4 overflows for the 4
(») significant digits but can be round up: 1.
378 x10"4

We can represent a humber as small as
10 * -9 x 1.000 (0.000000001) using 4
significant digits

We can represent a number as large as T
10 * 9 x 9.999 (9999000000.0) using 4
significant digits

)%)

Overflow, Floating Point &
Rounding

Cem Kaner
testingeducation.org/BBST

In floating point representation, with 4
significant digits:
9999000000.0
@ 9999000001.0
9999499999.0

will be stored as 9.999 x 109

@ Ex: 2.345, 1.234, etc.

2345=2x10"0+3 x10*-1+4 x10"* -2 +
5x10* -3

© =10"-3x2345
=10"-3x(2x10"3+3x10"2+4x10"
1+5x10"0)

Any 4-digit number can be represented as
an integer multiplied by 10 to the
appropriate power !

© 2345 is mantissa or the significand

== Floating Point

Decimal Numbers

PY Digits: We have 10 of them
0,12 3,45,6,7,8 9

"Decimal” refers to 10 (like counting on
your 10 fingers)

Base 10 arithematic represent numbers as
a sum of powers of 10

10"0 =1

101 =10

10"2 =10 x10 =100

Programming
@ Fundamentals &

Coverage

Significant Digits = 4 (Digits with Non
Zero Value)
@ In 2345 x10*-3
© Base=10
) Exponent = -3
o Each has 4 significant digits 0.02345 = 2.345 x 10~-2

2.345 = 2.345x10"0

o 2345 = 2.345x10"3

Each has same mantissa, 2.345

234500000 = 2.345 x 108

© Each has same basei.e. 10

©) Only the exponent varies

Fractions
AN

Ex: 6+7

954 =9 x 102+ 5 x10"1 + 4 x 10*0

(> Special Case:0=0

Output is larger than the largest decimal

number

6+7 =6+ (4+3)=(6+4)=3=10+3
@ Overflow =1x10"1+3x10*0=13

next power of 10

o We "carry the 1", i.e. we add 1 times the

® These can also be represented by Base 10
arithematic as a sum of powers of 10

Some Examples:

© 10*-3 =1/1000

10~-2 =1/100

® 10~-1=1/10

4]

4 +5x10*-5

0.02345=2x10"-2+ 3 x10*-3 + 4 x 10*-

Foundations - 4A, Programming Fundamentals & Coverage

Click Here For Interactive Mindmap

https://www.xmind.net/m/VCVdbn
https://twitter.com/parwalrahul

© A data structure is a way of organizing
data !

@ Data Structures
@ Strings
Records We can group primitive types in
meaningful ways such as:
© Arrays
O Lists

I~ A bit pattern in memory depends on how
the program reading it interprets it !

© AnInteger

A floating point number

© A character or string The same bit pattern might be:

Same Data, Different Meanings

Cem Kaner
testingeducation.org/BBST

) A command

© An address

The same pattern in the same location
= might be read differently by different
functions !

o Textbook examples of integers typically
use 8-bit or 16-bit words

Limits of integer changes with systems,
© use Minint and MaxInt instead of humeric
constants !

© byte (1Byte)

short (2 byte)

@ Popular Type of Integers (JAVA)

© int (4 byte)

() float (8 byte)

Leftmost Bit: Sign Bit

Next 8 Bits: Exponent @ Float: 32-bit number

& Integer, Float, Double, ASCII

Programming
E Fundamentals &

Coverage - Il

P Instead of counting from 0 to 9,
we consider counting from 0 to 1

o Only binary digits are 0 and 1
These are called "Bits" !

2*0=1
Binary Arithematic represent numbers as 2" =2
a sum of powers of 2

2*2=4

Binary Numbers =

13=1x2"3+1x2"2+1x2"0

Ex:1+1
Output is larger than the largest binary
number

@ Overflow 1+1=10

o We "carry the 1", i.e. we add 1 times the
next power of 2

Rather than interpreting the first bit in a
binary number as a digit, we can interpret

= Signed vs Unsigned it as a sign bit

DII 8,16,32,64 Bit Words

Y Computer reads memory several bits at a

time !
Apple 2 computer read 1 byte (8 bits) at a
o time
Original IBM Computers read 16 bits at a
Some Examples: time

Next 23 Bits: Mantissa

Leftmost Bit: Sign Bit

Next 11 Bits: Exponent @ Double: 64-bit number or Double Precision

Next 52 Bits: Mantissa

Contains different codes for different

commands & characters © ASCII : American Standard Code for

Information Interchange

3 Was initially invented for telecom

o Most modern computers operate on 32
bits or 44 bits at a time !

Computer with 32-bit word can operate
() on smaller blocks of memory too (8 or 16
bit) !

Foundations - 4B, Programming Fundamentals & Coverage

Click Here For Interactive Mindmap

https://www.xmind.net/m/kHcxBe
https://twitter.com/parwalrahul

@ There are fine tools easy to use

© Emma

EclEmma Some Examples:

&) https://www.eclemma.org/

o Programmers can easily check coverage

when they test their code.

{0} Good Tools for Structural
© Coverage

= Cem Kaner

testingeducation.org/BBST

o Black box testers find it hard to check

structural coverage

@ Unexpected Values (Eg. Divide by Zero)

o Stability of a variable at its boundary
values

@ Data Combinations

Data Flow

@ Missing Code

& Timing

Compatibility between systems

Aspects blind to Code Coverage
measures !

These are statments that tell the
computer what to do next!

®

@ Sequence

é Control Structures Branch Ex: If else
© Loop Ex: For, While

Programming
@ Fundamentals &

Coverage - lli

& Volume or Load

Interaction with background tasks

() Side effects of interrupts

£ Hardware Faults

@ Ul Errors

© Regulations

O Jump

Some Key Ex: print("")

Control . © Function Call . .
Statements: o Can be Library functions or

user defined functions

® Ex: Divide by Zero,
Access restricted memory

O Exception

o They often leave program in an
unexpected state !

() Hardware Interrupts

@ Interrupts

0 Software Interrupts

Extent (or proportion) of testing of a
PY given type that has been completed,
compared to the population of possible

tests !
El—_ C
gv overage £ Generally represented in percentage (%)
Statement Coverage
@ Structural Code Coverage Branch Coverage

Multi-Condition Coverage

Foundations - 4C, Programming Fundamentals & Coverage

Click Here For Interactive Mindmap

https://www.xmind.net/m/a8dCfX
https://twitter.com/parwalrahul

]
Il

Programming
E Fundamentals &

Coverage - IV

Cem Kaner
testingeducation.org/BBST

Coverage accesses the extent (or

® proportion) of testing of a given type that
has been completed, compared to the
population of possible tests !

n_§ Track coverage of the things that are
E_: P Coverage o most important to your project, whether
] these are "standard" coverage measures
or not!
@) Device Compatibility Coverage
@ Some Non Structural Coverage Examples I/P File Format Coverage
O/P File Format Coverage
People optimise what we measure them
(0 against, at the expense of what we don't
measure !
Q Coverage as a Measurement

low-power tests !

Example: Driving testing to achieve "
High" coverage is likely to yield a mass of

Foundations - 4D, Programming Fundamentals & Coverage

Click Here For Interactive Mindmap

https://www.xmind.net/m/vsmMZR
https://twitter.com/parwalrahul

. Chapter Five

The Impossibility of
I Complete Testing

The Impossibility of Complete Testing

This chapter explores the complexity of determining when testing 1s finished and how the goal of complete
testing 1s unattainable.

Topics Covered:

* Complete Testing

* Haster Eggs

* Error Handling Weakness
* Combination Testing

* Paths & Subpaths

* Data Flows Caution

"No user would do that"

o really means
"No user | can think of, who | like, would
do that on purpose" !

= Who aren't you thinking of?

Who don't you like who might really use

{1 N Extreme Values expose Error-
this product?

Handling Weaknesses

= Cem Kaner

testingeducation.org/BBST

‘E;—/: Complete Testing

= What might good users do by accident?

Obviously, we can't test every possible
> invalid value.
We have to sample !

Easter eggs are hidden surprises in a
program !

© Right sequence of characters
o o
They can only be PY Easter Eggs

Right place in the program triggered at

@ Impossibility of
¢ Complete Testing

© Right time

Easter eggs may even be triggered
uvnintentionally !

To Test

”Q "Everything",

Complete Coverage does not mean
complete testing !

Two tests are "distinct" if one test would
expose a bug that the other test would
miss !

@ Run all distinct tests
For testing to be truly "
complete", you would have to: Test so thouroughly
that you know that
there are no bugs left !

@ Vvalid

() Test every possible I/P to every variable

@ Invalid

e Test every possible combination of I/P to

every combination of variables !

e Test every possible sequence through the

program

“~ You would have to:

3 Test every possible timing of inputs !

Foundations - 5A, The Impossibility of Complete Testing

Click Here For Interactive Mindmap

® Test every interrupt at every point it can

occur!

@ Test every H/W & S/W configuration !

(@ Test for interference with other programs !

o Test every way user might try to use the

program !

https://www.xmind.net/m/6vXp2V
https://twitter.com/parwalrahul

Q (@parwalrahul

Consider what program does with
variable "X"

0

Consider what values of "X" might be

troublesome Cem Kaner
testingeducation.org/BBST

Consider what combination of other) .
© | .riables can be with "X" ® Data Flows Caution
Consider what trouble can "X" cause on .
(4] other variables ! Sup?pose there are K independent
variables,
V1, V2, ..., VK
@ Consider wha;t variable depends on "X" @ Label the choices for the variables as:

or vice versa !
N1, N2, through NK
The total number of combinations are:

(@ Consider the consequence of use ! I _b_l_t f N1 X N2 X ... X NK
mpossibility o
. Let V1 be type of Printer
0 (1] :
. Starts at an entry program Com plete TeStI ng II & N1 be number of Printer
i.e. Start of the program
© Let V2 be type of Cards
A path through a program
o Ends at an exit polnt p gh a prog Application in & N2 be number of Cards
i.e. The program stops “;é:: Configuration
* Paths & Subpaths 9 Number of distinct tests:
Starts & Ends anywhere () A subpath | @ Combination Testing NI X N2
. o On Adding a third variable i.e. Free
Starts, continues through N memory, Number of Tests = N1 X N2 X N3

statements & then stops! @ A subpath of length N

() Also applicable for combinations of data !

The "normal" case when testing combinations of
several independent variables is to adopta "
sampling" scheme.

After all, we can't run "all" these number of tests !

Popular variant on combinatorial
sampling scheme is "all-pairs" !

Foundations - 5B, The Impossibility of Complete Testing

Click Here For Interactive Mindmap

https://www.xmind.net/m/JAs9rG
https://twitter.com/parwalrahul

< Cem Kaner

¥

D)

Impossibility of J
Complete Testing Il

Summing Up

N

testingeducation.org/BBST

0o Simplistic approaches to path testing can
miss critical defects.

D_BI] s .
o— Key Points to Note Critical defects can arise under

circumstances that appear (in a test lab)
so specialized that you would never
intentionally test for them.

© The time needed for test-related tasks is
infinitely larger than the time available.

@ Testers live & breathe tradeoffs

© Analysis

) Time you spend on Troubleshooting

© Effective Failure Description

© Designing Tests

Documenting Tests

Executing Tests

© IS Time NO longer available for Automating Tests

Reviews, Inspections

Retooling, Upskilling

O @ ® |[© O

Tech Support

Foundations - 5C, The Impossibility of Complete Testing

Click Here For Interactive Mindmap

https://www.xmind.net/m/576U8J
https://twitter.com/parwalrahul

. Chapter Six

Introduction to
I Measurement

Introduction to Measurement

This chapter addresses the challenges of measurement in software testing,

Topics Covered:

* Basics of Measurement

* Measurement — Key Terms

* Non-Trivial Measurement

* Surrogate or Proxy Measures
* Early Testing

* Distortion & Dysfunction

* Recap

Relationship between attributes and measuring
instruments are often not straightforward !

© Quality

@ Reliability

@© Productivity

@ Supportability

Size of program

() Some Attributes:

4+ Non Trivial
~ Measurement

&) Predicted Schedule

© Speed of program

@) Complexity of program

@ Extent of testing done so far

€ Quality of testing done so far

Measurement is the empirical objective
@ assignment of numbers to attributes of objects or
events with the intent of describing them!

© Attribute (Thing to be measured)
Instrument (Thing used to measure)

© Reading (Value Instrument tells us)
o Measurements
() Measurement (It is the reading) Include

Metric (Function that assigns value
to attribute based on the reading)

(5

o We often use metric to refer to
Reading or the Scale!

Measure same thing 100 times and

you'll get 100 slightly different 0 Measurement

measurements. Error

= Cem Kaner
testingeducation.org/BBST

Q Measurement

Measurement -
EN Key Terms

@ How much testing have we done?

Some

1_? Important How thorough has our testing been?

Questions © How effective has our testing been?
() How much testing is enough?

 Are we done yet?

It's about estimating the value
of something.

Basics of Thouroughness
Measurement of testing

@™ Product Qualit
We count bugs Q y

©® because we want

to estimate: © Product Reliability

© Tech Support Cost

Something else ...

© Try 5 Why technique

Foundations - A, Infroduction to Measurement

Click Here For Interactive Mindmap

https://www.xmind.net/m/et79ki
https://twitter.com/parwalrahul

Cem Kaner

testingeducation.org/BBST

N

Measurement -
6B

¥

(2

Surrogate
or Proxy
Measures

Early
Testing

Many of the attributes we wish to
@ study do not have generally agreed
methods of measurement.

To overcome the lack of measure for
an attribute, some factor which "can
be" measured is used instead.

These alternate measures are called
surrogate measures.

A widely used opportunity for disaster!

Wrong Assumption
Ex: Measuring testers © 9 P

productivity via bugs

®
Used because they
are easy to count!

Run tests on features known to be
broken or incomplete

Run multiple related tests to find
multiple related bugs

Look for easy bugs in high quantities
rather than hard bugs

) Infrastructure
Less emphasis on Automation architecture
@) Tools & Documentation

More emphasis on bug finding Short term payoffs,
® Long term inefficiency!

Foundations - 6B, Intfroduction to Measurement

Click Here For Interactive Mindmap

https://www.xmind.net/m/Mec5Pw
https://twitter.com/parwalrahul

«J
il

Cem Kaner

testingeducation.org/BBST

N

Measurement -
6C

2

it

Distortion &
Dysfunction

Recap

® People optimize what we measure them against,
at the expense of what we don't measure.

A measurement system yields "distortion" if it

creates incentives for a person to make the

measurements look better rather than to optimize

for achieving the organization's actual goals.

A system is "dysfunctional" if optimizing for

measurement yields so much distortion that the
@ resultis a "reduction of value".

The organization would have "been better off with

no measurements" than with this measurement.

Measuring the effectiveness of testing by counting bugs is
fundamentally flawed.

Therefore measuring the effectivess of a testing strategy by
bug counts is probably equally flawed.

Measuring code coverage not only misleads us about how
much testing there has been.

It also creates an incentive for programmers to write trivial
tests.

Measuring progress via bug count rates not only misleads us
about "progress".
It also drives test groups into dysfunctional conduct.

Foundations - 6C, Introduction to Measurement

Click Here For Interactive Mindmap

https://www.xmind.net/m/5nbjda
https://twitter.com/parwalrahul

Required Readings

Michael Bolton: Testing Without a Map (PDF)

Douglas Hoftman: FExhausting your test options (PDF)

Cem Kaner: The impossibility of complete testing (PDF)
Cem Kaner: Software negligence and testing coverage (PDF)

Cem Kaner, Elisabeth Hendrickson & Jennifer Smith-Brock: Managing the proportion of testers to
(other) developers (PDF)

Brian Marick: How to misuse code coverage (PDF)

http://www.testingeducation.org/BBST/foundations/Bolton_2005-01-TestingWithoutAMap.pdf
http://www.testingeducation.org/BBST/foundations/Hoffman_Exhaust_Options.pdf
http://www.testingeducation.org/BBST/foundations/Kaner_impossibility.pdf
http://www.testingeducation.org/BBST/foundations/Kaner_negligence_and_testing_coverage.pdf
http://www.testingeducation.org/BBST/foundations/Kaner_pnsqc_ratio_of_testers.pdf
http://www.testingeducation.org/BBST/foundations/Marick_coverage.pdf

Recommended Readings - |

Austin, Robert. (1996), Measuring and Managing Performance in Organizations (BOOK)

James Bach: Heuristic Test Strategy Model (PDF)

Rex Black: Factors that influence test estimation (WEBSITE)

Michael Bolton: Meaningful metrics (PDF)

David Goldberg: What every computer scientist should know about floating-point arithmetic (PDF)
Douglas Hoffman: The darker side of software metrics (PDF)

Cem Kaner and Walter P. Bond: Software engineering metrics: What do they measure and how do we know?
(PDF)

Cem Kaner: Negotiating testing resources: A collaborative approach (PDF)

Cem Kaner: Recruiting software testers (PDF)

Michael Kelly: Using heuristic test oracles (PDF)

Michael Kelly: Estimating testing using spreadsheets (PDF)

http://www.testingeducation.org/BBST/foundations/Bach_satisfice-tsm-4p-1.pdf
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=ART&ObjectId=5992
http://www.testingeducation.org/BBST/foundations/Bolton_MetricsBlogPost.pdf
http://www.testingeducation.org/BBST/foundations/Goldberg_FloatingPoint.pdf
http://www.testingeducation.org/BBST/foundations/Hoffman_DarkerSideMetrics.pdf
http://www.testingeducation.org/BBST/foundations/Kaner_Bond_metrics2004.pdf
http://www.testingeducation.org/BBST/foundations/Kaner_NegotiatingTestResources.pdf
http://www.testingeducation.org/BBST/foundations/Kaner_JobsRev6.pdf
http://www.testingeducation.org/BBST/foundations/Kelly_UsingTestOracles.pdf
http://www.testingeducation.org/BBST/foundations/Kelly_estimating_testing.pdf

Recommended Readings - |l

Billy V. Koen: The engineering method and the heuristic: A personal history ("This was the beginning of a 37
year quest to find one thing that was not a heuristic.") (PDF)

Koen, Billy V. Definition of the Engineering Method, American Society for Engineering Education (ASEE). (A
later version that is more thorough but maybe less approachable 1s Discussion of the Method, Oxford University
Press, 2003) (BOOK)

Jonathan Kohl: How do I Create Value with my Testing? (PDF)

Brian Marick: Experience with the cost of different coverage goals for testing (PDF)

Petzold, Charles. (1993), Code: The Hidden Language of Computer Hardware and Software. Microsoft Press
(BOOK)

Popper, Karl (2002, 3rd Ed.) , Conjectures and Refutations: The Growth of Scientific Knowledge
(RoutledgeClassics). (BOOK)

Erik Simmons: When will we be done testing? Software defect arrival modeling using the Weibull distribution
(PDF)

Elaine |. Weyuker: On testing nontestable programs (PDF)

http://www.testingeducation.org/BBST/foundations/Koen_EngineeringMethod.pdf
http://www.testingeducation.org/BBST/foundations/Kohl_Blog_CreateValue.pdf
http://www.testingeducation.org/BBST/foundations/Marick_experience.pdf
http://www.testingeducation.org/BBST/foundations/Simmons_Weibull.pdf
http://www.testingeducation.org/BBST/foundations/Weyuker_ontestingnontestable.pdf

Join the Community

https://bit.ly/tttdiscord

